In weniger als einer Minute mit dem Lesen beginnen. Sie haben noch keinen tolino eReader?

Bayesian Methods for Hackers

Probabilistic Programming and Bayesian Inference

Addison-Wesley Data & Analytics Series

Master Bayesian Inference through Practical Examples and ComputationWithout Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practicefreeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes *; Learning the Bayesian ';state of mind' and its practical implications *; Understanding how computers perform Bayesian inference *; Using the PyMC Python library to program Bayesian analyses *; Building and debugging models with PyMC *; Testing your model's ';goodness of fit' *; Opening the ';black box' of the Markov Chain Monte Carlo algorithm to see how and why it works *; Leveraging the power of the ';Law of Large Numbers' *; Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning *; Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes *; Selecting appropriate priors and understanding how their influence changes with dataset size *; Overcoming the ';exploration versus exploitation' dilemma: deciding when ';pretty good' is good enough *; Using Bayesian inference to improve A/B testing *; Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
… weiterlesen

Beschreibung

Produktdetails


Format ePUB i
Kopierschutz Ja
Seitenzahl 256 (Printausgabe)
Erscheinungsdatum 30.09.2015
Sprache Englisch
EAN 9780133902921
Verlag Pearson Education
eBook
22,72
inkl. gesetzl. MwSt.
Sofort per Download lieferbar
Per E-Mail verschenken i

Andere Kunden interessierten sich auch für

  • You Are a Badass
    von Jen Sincero
    eBook
    2,99
  • Blockchain Grundlagen
    von Daniel Drescher
    eBook
    21,99
  • Das Minecraft-Architekten-Buch
    von James Floyd Kelly
    eBook
    2,99
  • IPhone X - so geht's
    von Anton Ochsenkühn
    eBook
    0,00
  • Das große Franzis Handbuch für Windows 10 Update 2018
    von Christian Immler
    eBook
    9,99
  • JavaScript and HTML5 Now
    von Kyle Simpson
    eBook
    0,00
  • WhatsApp – Einsteigen, Nutzen, Umziehen – leicht gemacht!
    von Anja Schmid
    eBook
    2,99
  • Praxisbuch ISO/IEC 27001
    von Michael Brenner, Nils Gentschen Felde, Wolfgang Hommel, Stefan Metzger, Helmut Reiser
    eBook
    49,99
  • Raspberry Pi
    von Michael Kofler, Charly Kühnast, Christoph Scherbeck
    eBook
    35,90
  • IT-Handbuch für Fachinformatiker
    von Sascha Kersken
    eBook
    30,90

Kundenbewertungen

Es wurden noch keine Bewertungen geschrieben.