Gutscheinbedingungen

**Gültig bis 31.07.2025 auf fremdsprachige Bücher online unter thalia.at, in der Thalia App und in teilnehmenden Thalia Buchhandlungen in Österreich. Einzelne Artikel können ausgeschlossen sein. Nicht gültig auf preisgebundene Artikel und fremdsprachige eBooks. In den Buchhandlungen nur gültig auf lagerndes Sortiment. Pro Einkauf einmal einlösbar. Nur gültig gegen Vorlage oder im Onlineshop hinterlegter Bonuscard. Click & Collect nur bei Onlinevorabzahlung möglich. Einlösung bei Scan & Go-Bezahlung nicht möglich. Keine Barauszahlung. Nicht kombinierbar mit anderen Gutscheinen oder (Preis-)Aktionen. Gutschein wird auf max. 500€ Bestellwert angerechnet. Nicht gültig für Geschenkkarten und Services.

Produktbild: Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
- 13%

Advanced Machine Learning with Evolutionary and Metaheuristic Techniques

13% sparen

189,99 € UVP 219,99 €

inkl. MwSt, Versandkostenfrei

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

23.04.2024

Herausgeber

Jayaraman Valadi + weitere

Verlag

Springer Singapore

Seitenzahl

362

Maße (L/B/H)

24,1/16/2,6 cm

Gewicht

723 g

Auflage

2024

Sprache

Englisch

ISBN

978-981-9997-17-6

Beschreibung

Portrait

Dr. Jayaraman Valadi  is a Distinguished Professor of Computer Science at FLAME University, Pune, India. He earned his Doctorate degree in Chemistry from Pune University. His research encompasses diverse areas, focusing on modeling and simulations in chemical and biochemical engineering, as well as process modeling, control, and optimization. Over the past decade, he has dedicated his efforts to exploring applications of Machine Learning and Artificial intelligence across various domains. He has dozens of publications in various reputed international journals. Beginning his journey in 1976, Dr. Valadi was associated with the Council of Industrial and Scientific Research (CSIR) in India, where he worked for 33 years and retired as a Deputy Director in 2009. After that, he was a CSIR Emeritus Scientist at the Center for Development of Advanced Computing, Pune till January 2013 & thereafter as a visiting faculty at Shiv Nadar University, Greater Noida, India until May 2023.

 

Dr. Krishna Pratap Singh is an Associate Professor in the Department of Information Technology at the Indian Institute of Information Technology Allahabad (IIITA), India, where he also heads the Machine Learning and Optimization (MLO) Lab. Dr. Singh earned his Ph.D. in Optimization (2009) from IIT Roorkee, and has over 15 years of research and academic experience. He is a member of the Sakura Science Club, Japan, Senior member IEEE and ACM Member. Currently, his research group is working on Transfer Learning for low resources data and towards developing a model in a Federated learning setting.

 

Dr. Muneendra Ojha is an Assistant Professor in the Department of Information Technology at the Indian Institute of Information Technology Allahabad (IIITA), India, and leading the Artificial Intelligence and Multiagent Systems (AIMS) lab. Dr. Ojha earned his Ph.D. from IIITA and MS from the University of Missouri-Columbia, USA.Dr. Ojha has more than 19 years of academic and industry experience. His research interests include multi-objective optimization, evolutionary algorithms, semantic web, natural language processing, deep reinforcement learning, and multi-agent systems.

 

Dr. Patrick Siarry received the PhD degree from the University Paris 6, in 1986 and the Doctorate of Sciences(Habilitation) from the University of Paris 11, in 1994. He was first involved in the development of analog and digital models of nuclear power plants at  Electricité de France (EDF. Since 1995 he is a full Professor of automatics and informatics. His main research interests are the adaptation of new stochastic global optimization heuristics to various situations (multi objective mixed discrete-continuous variables, continuous variables, dynamic,etc.) and their application to various engineering fields. He is also interested in the fitting of process models to experimental data and thelearning of fuzzy rule bases and neural networks. P.Siarry is a senior member  IEEE,  an appointed member of the Technical Committee on Soft Computing of the IEEE systems, Man and Cybernetics (SMC) Society and an appointed member of the Technical Committee on Optimal Control (TC 2.4) of IFAC.

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

23.04.2024

Herausgeber

Verlag

Springer Singapore

Seitenzahl

362

Maße (L/B/H)

24,1/16/2,6 cm

Gewicht

723 g

Auflage

2024

Sprache

Englisch

ISBN

978-981-9997-17-6

Herstelleradresse


Email: info@bod.de

Weitere Bände von Computational Intelligence Methods and Applications

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

  • Produktbild: Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
  • Chapter 1. From Evolution to Intelligence: Exploring the Synergy of Optimization and Machine Learning.- Chapter 2. Metaheuristic and Evolutionary Algorithms in Ex-plainable Artificial Intelligence.- Chapter 3. Evolutionary Dynamic Optimization and Machine Learning.- Chapter 4. Evolutionary Techniques in making Efficient Deep-Learning Framework: A Review.- Chapter 5. Integrating Particle Swarm Optimization with Reinforcement Learning: A Promising Approach to Optimization.- Chapter 6. Synergies between Natural Language Processing and Swarm Intelligence Optimization: A Comprehensive Overview.- Chapter 7. Heuristics-based Hyperparameter Tuning for Transfer Learning Algorithms.- Chapter 8. Machine Learning Applications of Evolutionary and Metaheuristic Algorithms.- Chapter 9. Machine Learning Assisted Metaheuristic Based Optimization of Mixed Suspension Mixed Product Removal Process.- Chapter 10. Machine Learning based Intelligent RPL Attack Detection System for IoT Networks.- Chapter 11. Shallow and Deep Evolutionary Neural Networks applications in Solid Mechanics.- Chapter 12. Polymer and nanocomposite Informatics: Recent Applications of Artificial Intelligence and Data Repositories.- Chapter 13. Synergistic combination of machine learning and evolutionary and heuristic algorithms for handling imbalance in biological and biomedical datasets.